
Egocentric Video Search via Physical Interactions

Taiki Miyanishi†, Jun-ichiro Hirayama†, Quan Kong†‡,
Takuya Maekawa†‡, Hiroki Moriya†, and Takayuki Suyama†

†ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
‡Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

{miyanishi, hirayama, kong, t.maekawa, moriyah, suyama}@atr.jp

Abstract

Retrieving past egocentric videos about personal daily life is
important to support and augment human memory. Most pre-
vious retrieval approaches have ignored the crucial feature of
human-physical world interactions, which is greatly related to
our memory and experience of daily activities. In this paper,
we propose a gesture-based egocentric video retrieval frame-
work, which retrieves past visual experience using body ges-
tures as non-verbal queries. We use a probabilistic framework
based on a canonical correlation analysis that models physical
interactions through a latent space and uses them for egocen-
tric video retrieval and re-ranking search results. By incor-
porating physical interactions into the retrieval models, we
address the problems resulting from the variability of human
motions. We evaluate our proposed method on motion and
egocentric video datasets about daily activities in household
settings and demonstrate that our egocentric video retrieval
framework robustly improves retrieval performance when re-
trieving past videos from personal and even other persons’
video archives.

Introduction
Recent developments in wearable computing (Mann 1997)
allow us to digitally capture everything that we have ever
seen as well as our daily actions (Bell 2001). In particu-
lar, recorded egocentric images and videos of daily activi-
ties from wearable cameras are important to assist memory
recollection for both memory-impaired and unimpaired per-
sons (Berry et al. 2007; Hodges et al. 2006; Kalnikaite et
al. 2010; Sellen et al. 2007). Since egocentric images and
videos about daily activities are long and unstructured, the
ability to retrieve past egocentric images and videos could
support and augment human memory. The current egocen-
tric image and video retrieval methods use manually and au-
tomatically labeled texts (Gemmell, Bell, and Lueder 2006;
Hori and Aizawa 2003; Nakayama, Harada, and Kuniyoshi
2009) or images as user queries (Chandrasekhar et al. 2014).
However, these approaches let users who need memory sup-
port describe what they forgot in their own words as user
queries or prepare image queries similar to the past visual
experience of what users want to remember. Furthermore,
most previous methods have ignored the valuable feature of
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human-physical world interactions, which usually associate
our daily activities and visual experience. For example, if
you drink a cup of coffee, you might first look at your coffee
cup. Therefore, the question about incorporating physical in-
teractions into egocentric video retrieval is still open.

To address this question, in this paper, we propose a
gesture-based egocentric video search framework that uses
gesture motions as user queries. The underlying idea is that
most of our experience in daily life is not explicitly verbal-
ized but is associated with bodily behaviors. Body gestures
associated with activities will thus be a natural modality for
people to search for daily-life episodes. Moreover, body ges-
tures can sometimes be easier to recall than query words
for memory- or language-impaired persons. In fact, procedu-
ral memory, which involves the memory of how to perform
actions, is reportedly unaffected by age when contrasted
against semantic and episodic memories, which involve the
memories of naming and autobiographical events (Hodges,
Salmon, and Butters 1990; Light et al. 1992). By using the
proposed framework, we can retrieve our past visual experi-
ence just by describing it with gesture motions. For example,
if you want to remember something you ate last evening, you
could retrieve and remember the past visual experience with
an eating gesture. To achieve the gesture-based retrieval sys-
tem, we introduce multimodal retrieval and re-ranking mod-
els.

Our proposed retrieval system works as in Fig. 1. First,
the system simultaneously records motion and egocentric
video about the daily activities of users on their personal
digital archives using wearable devices. Second, the system
learns the recorded motion and video matching using proba-
bilistic canonical correlation analysis (PCCA), which mod-
els human-physical world interactions for indexing paired
motions and videos. Third, we retrieve a motion-video pair
for any given query using the similarity between motions
in the learned latent space. Moreover, we re-rank retrieved
videos in latent space to robustly improve retrieval perfor-
mance. We assumed that by incorporating physical interac-
tions into the retrieval models, we could solve the problems
resulting from the variety of human motions related to daily
activities, which leads to decreasing search performance.

Our experiments using motion and egocentric videos
about daily activities collected in household settings reveal
two main findings. (i) The proposed gesture-based egocen-



Figure 1: Our system retrieves videos from the egocentric video
archive through a video search engine in response to a given gesture
motion as a query.

tric video retrieval framework can retrieve past egocentric
videos from personal and even another person’s videos in
response to gesture motions. (ii) Our re-ranking method
modeling physical interactions robustly improves egocentric
video retrieval performance.

The remainder of the paper is organized as follows. First,
we provide some background in egocentric video research.
Next, we present our egocentric video search framework and
the re-ranking model. Finally, we present an experimental
evaluation on motion and egocentric video datasets collected
in house-like settings followed by our conclusions.

Related Work
Recently, there has been significant research interest in ego-
centric video such as activity recognition, summarization,
and retrieval since the hardware development of a wear-
able camera enables capturing everyday activities of hu-
man life. To remember past human activities, egocentric ac-
tivity recognition is useful. The existing egocentric vision-
based activity recognition methods use segmented hand re-
gion (Fathi, Farhadi, and Rehg 2011), gaze location (Fathi,
Farhadi, and Rehg 2011), and detected object (Ramanan
2012) as features of human activities. These approaches
mainly classify egocentric videos using supervised tech-
niques that require manually labeled training data, so that
predictable activities are limited. In contrast, our egocen-
tric video retrieval uses unsupervised techniques for retriev-
ing videos in order to address various information needs.
Egocentric summarization enables us to quickly browse the
long-past visual experience. Current works use visual fea-
tures focusing on important regions including people and
objects (Ghosh 2012; Lee and Grauman 2015) and their
story (Lu and Grauman 2013). Even though summarized
videos can be a first step for retrieving important objects and

activities, an information retrieval framework is essential in
finding useful information from a vast amount of egocentric
videos about daily life.

One recent egocentric retrieval study uses image an-
notation techniques to label images for text-based re-
trieval (Nakayama, Harada, and Kuniyoshi 2009). How-
ever, text-based retrieval methods only let users describe
the past in concrete language. Another direction is us-
ing images or videos as user queries (Imura et al. 2011;
Chandrasekhar et al. 2014), which involves a content-based
image retrieval method (Smeulders et al. 2000). However,
content-based image retrieval requires images or videos in-
cluding objects and specific locations about what we want
to remember as queries. These limitations defeat the pur-
pose of supporting and augmenting human memory. More-
over, these egocentric retrieval methods ignore the important
features of human-physical world interactions. In contrast,
our proposed method can retrieve past videos anywhere and
does not require texts, images or videos since we use gesture
motion as a query. Moreover, the main topic of this paper is
investigating the effectiveness of physical interaction for re-
trieving and re-ranking egocentric videos for improving re-
trieval performance.

Egocentric Video Search Framework
In this section, we present a framework of an egocentric
video search system. Our retrieval system outputs an ego-
centric video in response to a given gesture motion based on
a retrieval model constructed in advance. To construct the
model, first we collect motions and videos of daily activi-
ties using motion sensors and a wearable camera. Then, we
segment the motion and video pairs into a series of n obser-
vations M := {(x

i

,y
i

) | i = 1, 2, . . . , n}, where x 2 Rd

x

and y 2 Rd

y are the observed feature vectors of motion and
video. We call M external memory for augmenting human
memory.

Our goal is to retrieve optimal past video y

⇤ from external
memory M in response to given motion query x

0. The out-
put y⇤ is obtained by maximizing a reproducibility function
R : x

0 7! (x,y), i.e.,

f((x⇤,y⇤
)) = argmax

(x,y)2M
R(x

0, (x,y)). (1)

The reproducibility function R, depending on the specific
retrieval model we use, measures how current query x

0 re-
produces each instance in the external memory (x,y) 2 M.

Below, we design a reproducibility function using a prob-
abilistic IR framework based on the probabilistic canonical
correlation analysis (PCCA) (Bach and Jordan 2005). First,
we introduce PCCA and then present the corresponding re-
producibility function by extending PCCA into the IR con-
text. Although the induced final formula is almost the same
as CCD (Nakayama, Harada, and Kuniyoshi 2010), we natu-
rally extend it to the re-ranking model that re-ranks motion-
video pairs in latent space.

Many multi-modal retrieval frameworks that retrieve im-
ages using text queries (Jeon, Lavrenko, and Manmatha
2003; Guillaumin et al. 2009; Xu et al. 2015) have been pro-
posed. However, we use the PCCA-based retrieval model,



which easily combines motion and video features and can
be easily extended to the re-ranking model.

Probabilistic CCA
PCCA has been widely used in information-matching tasks.
We use PCCA to learn the shared representations of motion
and video features, assuming that the shared linear repre-
sentation approximately models the essential interaction be-
tween humans and the physical world. Furthermore, being
a formal probabilistic model, PCCA gives a natural proba-
bilistic IR framework for egocentric video retrieval.

Figure 1 (middle) shows our PCCA where paired mo-
tion and video features (x,y) are given by a linear model
with shared latent variables z 2 Rm (m  min{d

x

, d
y

}):
x = B

x

z + ✏

x

,y = B
y

z + ✏

y

. Both the latent and er-
ror variables are assumed to be Gaussian, such that z ⇠
N(0, I

m

), ✏
x

⇠ N(0, 
x

), ✏
y

⇠ N(0, 
y

), where  
x

and
 

y

are covariance matrices. Then, the posterior distribution
of z given motion feature x and that given video feature y

are obtained respectively by

z | x ⇠ N(W
x

x,V
x

), z | y ⇠ N(W
y

y,V
y

), (2)
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. We estimate the parameters B
x

and B
y

by maximum-likelihood estimation that selects the
best model and parameters to explain the simultaneously
recorded pairs of motion and video features. The maximum
likelihood estimates of B

x

, B
y

are given (Bach and Jordan
2005) by B

x

= C
xx

U
x

M
x

, B
y

= C
yy

U
y

M
y

, where
C

xx

2Rd

x

⇥d

x and C
yy

2Rd

y

⇥d

y are the sample covariance
matrixes in the motion and video features. M

x

,M
y

2Rm⇥m

are arbitrary matrices satisfying M
x

M>
y

= ⇤, where ⇤ is
a diagonal matrix containing the first m canonical correla-
tions. The columns in U

x

and U
y

are the corresponding
canonical vectors obtained by conventional CCA (Hardoon,
Szedmak, and Shawe-Taylor 2004) for motion and video
features, respectively. We set them using diagonal matrices
M

x

= M
y

= ⇤

1/2, which equally weight the motion and
video features.

Probabilistic CCA for Retrieval
To derive the reproducibility function R, we formulate the
IR problem from a probabilistic point of view based on the
PCCA model. According to Eq. (2), the latent vector z can
be estimated as the posterior mean z = W

x

x for any query
x. Now suppose that we have already obtained latent vectors
z

i

corresponding to all pairs (x
i

,y
i

) in the external memory
M, and assume virtually that any new latent query z

0
=

W
x

x

0 is stochastically generated from one of the |M| latent
vectors z

i

in the following manner: (i) first pick one instance
(x

i

,y
i

) in the external memory according to the probability
of ⇡

i

, (ii) then, add a stochastic noise r to the corresponding
latent vector z

i

= W
x

x

i

, so that we finally obtain z

0
=

z

i

+ r.
The IR problem can then be formulated as estimating z

i

,
from which the new z

0 was generated. If r has the probabil-
ity density function given by f , a reasonable approach is to

maximize the posterior probability p(z
i

| z0
) = ⇡

i

f(z0 �
z

i

)/
P

i

⇡
i

f(z0 � z

i

) with respect to i = 1, 2, . . . , |M|.
Here, we set the prior probability ⇡

i

as uniform, although
more informative priors can also be available. Thus, we pro-
pose a generic form of reproducibility function R

f

for any
specific choice of f :

R
f

(x

0, (x,y)) =
f(W

x

x

0 �W
x

x)P
(x,y)2M f(W

x

x

0 �W
x

x)

. (3)

Note that with the uniform prior ⇡
i

, the problem is equiva-
lent to minimizing � log f(W

x

x

0 � W
x

x), which is typi-
cally done in practice.

We also design a specific f according to the PCCA model.
We define it as f

pcca

. The model implies that if given the
query x

i

without observing y

i

, the noise vector r = z

0�z

i

should follow N(0,V
x

); alternatively, if given the target y
i

without observing x

i

, it should follow N(0,V
y

). Here, we
combine the two different views in a simple manner:

f
pcca

(r) = N(r | 0,V
x

+V
y

), (4)

implying with Eq. (3) that the corresponding R is given by

R(x

0, (x,y)) / f
pcca

(W
x

x

0 �W
x

x) (5)

/ exp{�(z

0 � z)

>
(V

x

+V
y

)

�1
(z

0 � z)},

which can be seen as a similarity measure between x

0

and x in the latent space with the metric integrating
the posterior uncertainties in two different views. Note
that the last formula is almost the same as the CCD
model (Nakayama, Harada, and Kuniyoshi 2010), which
uses the KL-divergence between p(z

i

|x0
) and p(z

i

|x). Nat-
urally, we extend this formula into the egocentric video re-
ranking model using the probability density function f

pcca

.

Probabilistic CCA for Re-Ranking
To further improve retrieval performance, we extend the
probabilistic CCA model into the video re-ranking frame-
work. Although many re-ranking models have been pro-
posed in the IR community, we used a pseudo-relevance
feedback method based on a kernel density estimation
(KDE) (Efron et al. 2014) since KDE can naturally incorpo-
rate multimodal features in the learned latent space. The past
work used weighted kernel densities for re-ranking search
target x according to

p(x) =
1

m

mX

i=0

!
i

f(x� x

i

), (6)

where m is the number of pseudo-relevance documents used
for re-ranking, and !

i

is the weight of a kernel f(·). We
use rank-based weights !

i

= �e��r

i , which weight search
results with exponential decay regarding their ranks, where
� =

1
r̄

, which is the maximum likelihood estimate of r̄, is
the mean of the ranks 1, 2, . . . ,m. The rank-based weights
are the most successful weights for re-ranking, and Gaus-
sian kernel was used for calculating distance between re-
trieved search targets in the past work (Efron et al. 2014).
However, this existing model only considers a single modal-
ity (i.e. motion in our case). We assumed the fusion of



motions and videos leads to robustness for re-ranking re-
sults since visual feature are stable and temper the ambigu-
ity of motions. To leverage combined multi-modal features
(i.e. motion and video), we use the posterior probability of
p(z

i

|z) / f
pcca

(z

i

�z) in the latent space produced by
Probabilistic CCA following Eq. (4). Thus, we have a new
KDE:

p(x) =
1

m

mX

i=0

!
i

f
pcca

(W
x

x�W
x

x

i

). (7)

This simple formula re-ranks search results in the latent
space considering multi-modalities modeling physical inter-
actions for re-ranking as well as the PCCA-based initial re-
trieval Eq. (5).

Temporal Diversification
Finally, we introduce a search result diversification tech-
nique. In our study, the proposed framework retrieved three
seconds of video shifted by 0.1 seconds over all the videos.
As a result, the search results are redundant. For example,
the retrieval methods may retrieve a video about “drink cof-
fee” at 10:24 and 17.5 seconds and another short video about
“drink coffee” at 10:24 and 17.6 seconds. To avoid this prob-
lem, we diversified the search results using a simple tempo-
ral diversification technique. First, we retrieved video using
the retrieval methods and obtained their search scores, which
are the values of the reproducibility function in our case.
Then, we segmented the retrieved video sets into a series of
30-second segments. We selected a high-scoring video from
each segment and sorted them in decreasing order of their
search scores. If duplicated videos exist in a single activity
label due to temporally equal segregation, we also removed
the low-scoring video. Then, we diversified search results
of initial retrieval and re-ranked diversified results using our
proposed re-ranking methods.

Evaluation
This section reports on the empirical evaluation for the pro-
posed gesture-based egocentric video retrieval framework in
terms of the retrieval effectiveness of the search results. We
demonstrate that our framework can retrieve past visual ex-
perience and robustly improve retrieval performance by us-
ing the proposed re-ranking method that models physical in-
teractions.

Data Sets
We built a dataset by collecting the daily activities of eight
subjects (not the researchers) in a house. Even though the
most natural data would be acquired from the normal daily
lives of the subjects, collecting sufficient samples of such
data in their own individual homes/apartments is too dif-
ficult. In this study, we used a semi-naturalistic collection
protocol (Bao and Intille 2004) to collect more variable be-
havior data than in a laboratory setting.

Procedure Eight subjects whose ages ranged from 21 to
26 (mean = 23.13, SD = 1.69) wore wearable motion sen-
sors, LP-WS1101, which contain three-axis accelerometers

Figure 2: Room layout of experimental environment and 20 daily
activities for a with-object task.

and gyroscopes, and a wearable camera, Panasonic HX-
A100 (1280 ⇥ 720 pixels, 29.97 fps). They performed the
20 written activities at different places based on written in-
structions on a worksheet without direct supervision from
the experimenters. The subjects performed relatively free ac-
tivities in specified places related to them. For example, sub-
jects “turn on/off TV” in the living room and “open/close the
refrigerator” in the kitchen. We randomly shuffled the order
of places where subjects did the daily activities in each ses-
sion. We call this experiment a with-object task. Figure 2
shows the room layout of the experimental environments
and lists the 20 daily activities at each place performed by
the subjects in each session of the with-object task. A single
session averaged 10.86 minutes (SD = 1.14) among the sub-
jects. Sessions were repeated 12 times (including two initial
practice sessions); they were allowed short breaks. No re-
searcher supervised the subjects while they collected data
under the semi-naturalistic collection protocol. We used the
motion and video data from the 3rd to 12th sessions of the
with-object task as the search target.

After the with-object task, to collect gesture motions for
retrieving past activities we asked the subjects to remember
and repeat 20 activities that they did in the with-object task
experiments as gesture motions used for queries. This sec-
ond experiment is called a without-object task. We explained
the without-object task and gave more written instructions
that listed the activities of the without-object task that con-
sisted of 20 activities per session. Its activities were slightly
different from the with-object task to complete each activ-
ity during specified times. For example, we added “pour hot
water” and “stir a cup of coffee” instead of “make coffee”
and removed “sleep on the bed.” Subjects then repeated the
20 activities, this time without objects and in a new envi-
ronment. All sessions were repeated six times including one
practice session. Note that the 1st session in the without-
object task was a practice session, so we removed it and used
gesture motions from the 2nd to 6th sessions as queries.

Relevance Judgments Our goal is to return a relevant
ranked list of egocentric videos about daily life using the
gesture-based retrieval framework. To make daily activity
datasets for retrieval evaluation, we specified 20 activities
and their start and end points to the collected sensor dataset.
Two annotators labeled the 20 activities listed on the work-
sheet of the without-object task and the sensor data collected



in both the with/without-object tasks by watching 17 hours
of egocentric video captured by cameras attached to the
eight subjects. We obtained 1,982 labels for the with-object
tasks and 799 for the without-object tasks. In terms of rele-
vance judgments, each retrieved motion and video pair was
judged with these labels. We defined a relevant pair as one
that temporally overlaps more than 50% (overlapping more
than 1.5 seconds) of the corresponding activity label.

Feature Extraction
In this section, we explain the extraction of the motion and
video features. These features were used for the input of our
proposed egocentric video retrieval system.

Motion Feature For the motion feature extraction, first we
down-sampled the acceleration and gyro signals from 50 to
25 Hz to denote 25 samples a second. Then, we used a mov-
ing average with four overlapping samples to smooth the sig-
nals. To obtain temporal feature of motions, we also applied
a short time Fourier transform (STFT) to the smoothed sig-
nals with a sliding window. The window width was set to
75 samples and was shifted by one sample. Then, we down-
sampled the transformed signals from 25 to 10 Hz to align
the sampling rate to the video features. Note that each mo-
tion feature sample had 684 dimensions. Finally, we stan-
dardized the features with the mean and the variance.

Video Feature We used a sliding window method to ob-
tain the video features, which consisted of successive im-
age features in a window. To extract the image features, we
used Caffe,1 which is a well-known deep learning frame-
work, and prepared several pre-trained models. For feature
extraction, we used a pre-trained model of VGG (Simonyan
and Zisserman 2014), which can produce discriminative vi-
sual features. We used the activations in the second to last
fully connected layer as image features. As a result, we ob-
tained 4,096 dimensions per frame extracted from the ego-
centric video. Then, we applied principal component analy-
sis (PCA) to the extracted image features and reduced the di-
mensions from 4,096 to 250. Then, to align the sampling rate
to the motion features, we down-sampled all of the trans-
formed image features from 29.97 to 10 Hz by a rolling
mean of the time intervals. We combined the image features
by three seconds by shifting one sample. Each video feature
sample had 7,500 dimensions. Finally, we standardized the
video features with the mean and the variance.

Baselines
Our approach first conducts initial retrieval according to
the value of the reproducibility function using the prob-
ability function of Eq. (5) and re-ranks search results by
the KDE of Eq. (7) after temporal diversification. We de-
note the proposed initial retrieval and re-ranking methods
as MR + PCCA and KDE (PCCA), respectively. Note
that even though MR + PCCA is almost the same as past
work (Nakayama, Harada, and Kuniyoshi 2010), the effec-
tiveness of a PCCA-based method for gesture-based egocen-
tric video retrieval is still unclear.

1http://caffe.berkeleyvision.org/

To evaluate our retrieval method, we also prepared several
baseline methods. The first baseline retrieves and re-ranks
motion and video pairs using the following Gaussian kernel
in the original motion space instead of f

pcca

(·) used in MR
+ PCCA and KDE (PCCA).

f
gauss

(x1 � x2) / exp{�kx1 � x2k}.

We denote these initial retrieval and re-ranking methods as
MR and KDE, respectively. Note that KDE is the same as
the reranking method (Efron et al. 2014) when the kernel
bandwidth is set to one. By comparing these with PCCA and
KDE (PCCA), we can quantify the benefit of combining the
motion and video features and retrieve motion and videos
pairs in the learned latent space. The second baseline uses
the following probability density, which uses the latent space
learned by a standard canonical correlation analysis (CCA)
instead of f

pcca

(·) used in MR + PCCA and KDE (PCCA).

f
cca

(

˙W
x

x1 � ˙W
x

x2) / exp{�k ˙W
x

x1 � ˙W
x

x2k},

where ˙W
x

is a transformed matrix learned by CCA in the
motion view. By comparing this with PCCA, we can quan-
tify the benefit of considering the uncertainty for modeling
physical interactions. We denote this initial retrieval and re-
ranking as MR + CCA and KDE (CCA), respectively.

For CCA and PCCA, we tuned the parameter as the num-
ber of dimensions d in the latent space learned by CCA
and PCCA. For KDE , KDE (CCA) KDE (PCCA) , we
tuned the feedback motion and video pairs m. We used
leave-one-subject-out cross-validation to tune these param-
eters among candidates d = {50, 100, 150, 200, 250, 300}
and m = {1, 2, 4, 8, 16, 32}, which are optimized for the
best performance of the average precision on the validation
data of seven subjects (without involving a target subject),
and tested it with the target subject dataset.

Experimental Results
In the experiments, what we want to evaluate in this study is
the retrieval effectiveness of the ranked list when retrieving
and re-ranking past videos from personal and another per-
son’s videos. Thus, we evaluated the search results in two
conditions: the inner-subject and cross-subject conditions.
The inner-subject condition assumed that users retrieved
past egocentric video from their personal video archives.
Under this condition, we used the motion queries and videos
from each subject. The cross-subject condition assumed that
the users retrieved egocentric video from the video archives
of others. Under this condition, we retrieved the videos of
a single subject with multiple subject queries and averaged
their evaluation results. We averaged the evaluation results
over the queries of each activity by each subject, and so we
evaluated the retrieval methods using 160 samples (20 activ-
ities ⇥ 8 subjects) for motion queries under both conditions.

To evaluate the retrieval effectiveness, we used average
precision (AP), which is the mean of the precision scores
obtained after each retrieved relevant video. We discuss sta-
tistical significance of results using a two-tailed paired t-test
with p < 0.05 on 160 samples using Bonferroni correction



Table 1: Performance comparison of initial retrieval when using
the proposed methods and baselines under the inner-subject and
cross-subject conditions. The best performing run is indicated in
bold and statistically significant differences are marked using the
symbols in the top-right corner of each method name.

Method Inner-Subject Cross-Subject
MR~ 0.2699 0.1477
MR + CCA� 0.3253~ 0.1856~
MR + PCCA 0.3557~� 0.2087~�

Table 2: Performance comparison of the proposed methods and
baselines under the inner-subject and cross-subject conditions
when re-ranking results of MR+PCCA. The best performing run is
indicated in bold and statistically significant differences are marked
using the symbols in the top-right corner of each method name.

Method Inner-Subject Cross-Subject
MR + PCCA } 0.3557 0.2087
+ KDE~ 0.3554 0.2076
+ KDE (CCA)� 0.3697~ 0.2187}~

+ KDE (PCCA) 0.3822}~� 0.2238}~�

with the number of subjects for multiple testing. To com-
pare our proposed methods to baselines, we use this eval-
uation framework under both inner/cross-subject conditions
throughout this paper.

Re-ranking Performance Table 2 shows the retrieval per-
formance under both inner/cross-subject conditions when
using our proposed re-ranking methods. We used initial re-
trieval as MR + PCCA for all methods. The results show
that the proposed MR + PCCA + KDE (PCCA) signif-
icantly outperformed all baselines with statistical signif-
icance. The single modality re-ranking approach MR +
PCCA + KDE decreases retrieval performance compared to
the initial retrieval. Moreover, from Fig. 3, our PCCA-based
retrieval and re-ranking consistently improved retrieval per-
formance over all subjects compared to KDE and KDE
(CCA). The results suggest that the PCCA-based re-ranking
model boosts retrieval performance when re-ranking per-
sonal and another person’s past egocentric videos. Figure 4
shows the top five retrieved videos with MR, MR + PCCA,
and our method MR + PCCA + KDE (PCCA) using gesture
motions “clean the table” and “make a sandwiched cookie”.
For both cases, MR + PCCA using PCCA-based retrieval
improved results of MR. Furthermore, MR + PCCA + KDE
(PCCA) successfully re-ranked relevant videos at the top
since some relevant video already exists at initial retrievals
MR + PCCA.

Initial Retrieval Performance Table 1 shows the initial
retrieval performance under both inner/cross-subject condi-
tions. Multimodal methods MR + CCA and MR + PCCA
remarkably outperformed single modality method MR with
statistical significance under both inner/cross-subject con-
ditions, which suggests that modeling physical interactions
is important for improving gesture-based egocentric video
retrieval performance when retrieving videos from personal
and another person’s video archives. MR + PCCA also out-

Figure 3: Improvement of AP about each subject from the ini-
tial retrieval MR under both inner-subject (left) and cross-subject
(right) conditions. The x-axis shows subject ID. The y-axis shows
the AP improvements.

Figure 4: Example of search results retrieved by the methods MR,
MR + PCCA, and MR + PCCA + KDE (PCCA) using ges-
ture motions: “clean the table” (upper) and “make a sandwiched
cookie” (lower). Retrieved videos are ordered by search score from
left to right. Blue boxes are relevant videos.

performed the CCA-based approach MR + CCA with statis-
tical significance indicating the effectiveness of Probabilistic
CCA when modeling physical interactions for the gesture-
based egocentric video retrieval.

Robustness We showed that KDE (PCCA) significantly
improves retrieval performance against the initial search re-
sults MR + PCCA and other baselines on averaged evalua-
tion measures. In this section, we demonstrated the robust-
ness of our proposed method, which is defined as the num-
ber of queries improved/degraded as the results of applying
these methods (Metzler and Croft 2007). A highly robust re-
ranking technique will significantly improve many queries
and only minimally degrade very few. Figure 5 shows the re-
trieval performance (i.e. AP values) of each query when us-
ing KDE, KDE (CCA), and KDE (PCCA), which suggests
KDE (PCCA) is a robust re-ranking method compared to the
baselines. For example, KDE (PCCA) improved search re-
sults for 17 out of 20 queries in both inner/cross-subject con-
ditions over the initial retrieval MR + PCCA, whereas KDE
and KDE (CCA) improved results over the initial retrieval
MR + PCCA for nine and 11 queries in the inner-subject
condition and for eight and 15 queries in the cross-subject
condition, respectively. Moreover, KDE (PCCA) improved
results for 16 queries over KDE (CCA) in both conditions.
These results indicate that our proposed PCCA-based mul-
timodal re-ranking method robustly improves gesture-based
egocentric video retrieval by modeling physical interactions.



Figure 5: Improvement of AP about each query from the initial
retrieval MR + PCCA under both inner-subject (upper) and cross-
subject (lower) conditions. The x-axis shows queries ordered by
AP improvements. The y-axis shows the AP improvements.

Conclusion
In this paper, we proposed a novel framework for egocentric
video search using gesture motions as queries. Our proposed
framework used the probabilistic IR model, which fuses mo-
tion and video features by introducing probabilistic canoni-
cal correlation analysis. We induced the similarity between a
given motion and the past motion and video pairs in canon-
ical space and naturally extended the retrieval model into
the re-ranking method. The experimental results show that
our proposed gesture-based egocentric video search frame-
work can retrieve past egocentric video using gesture mo-
tions and robustly improve retrieval performance when re-
ranking search results in the latent space learned by PCCA.
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