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Abstract

Recognizing activities of daily living (ADLs) in the real
world is an important task for understanding everyday human
life. However, even though our life events consist of chrono-
logical ADLs with the corresponding places and objects (e.g.,
drinking coffee in the living room after making coffee in
the kitchen and walking to the living room), most existing
works focus on predicting individual activity labels from sen-
sor data. In this paper, we introduce a novel framework that
produces an event timeline of ADLs in a home environment.
The proposed method combines semantic concepts such as
action, object, and place detected by sensors for generating
stereotypical event sequences with the following three real-
world properties. First, we use temporal interactions among
concepts to remove objects and places unrelated to each ac-
tion. Second, we use commonsense knowledge mined from
a language resource to find a possible combination of con-
cepts in the real world. Third, we use temporal variations of
events to filter repetitive events, since our daily life changes
over time. We use cross-place validation to evaluate our pro-
posed method on a daily-activities dataset with manually la-
beled event descriptions. The empirical evaluation demon-
strates that our method using real-world properties improves
the performance of generating an event timeline over diverse
environments.

Introduction
Recognizing human activities and his surrounding situation
in the real world is an important task for understanding ev-
eryday human life. The purpose of such activity recognition
is to automatically discover and identify human activities
through mining signals from a wide variety of pervasive and
wearable sensors. With the advances in accessible sensor
technology, many real-world applications of activity recog-
nition have been proposed such as monitoring Alzheimer’s
disease patients (Meditskos, Kontopoulos, and Kompatsiaris
2014), discovering activity patterns in a smart home (Rashidi
and Cook 2010), recognizing nursing activities for improv-
ing medical care (Inoue et al. 2015), and carrying out life-
logging functions (Castro et al. 2015).

Currently, many works are tackling these activity recog-
nition problems (Bao and Intille 2004; Ramanan 2012;
Patterson et al. 2005; Maekawa et al. 2010; Ordóñez and
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Figure 1: Illustration of generating an event timeline from a
semantic concept stream.

Roggen 2016) by classifying sequences of sensor data into
discrete labels identifying activities of daily living (ADLs).
These are basic activities in human living such as “walking,”
“eating,” and “reading a book.” However, simply predicting
ADL labels is not sufficient to describe human daily life,
since our life is made up of many chronologically ordered
events, where we perform various ADLs in diverse environ-
ments while targeting a variety of objects. For example, a
man drinks coffee in the living room after making coffee in
the kitchen and walking into the living room. To understand
what people are doing when and where in the real world, we
need to recognize the sequence of combinations of semantic
concepts (e.g., action, object and place) detected by sensors
in addition to predicting each ADL label.

In this paper, we propose a method to generate event
timelines by generating a stereotypical event sequence of
ADLs from sensor data. Figure 1 shows the process of our
method when a man drinks coffee after moving to the liv-
ing room. Our method translates sensor data into multiple
semantic concepts of ADLs and produces a set of stereotyp-
ical sequential events with a timestamp by selecting appro-
priate concepts from the semantic concept stream. However,
it is unknown which semantic concepts are related to each
ADL, since temporal misalignment among sensors is quite
frequent (Crispim-Junior et al. 2016). Moreover, there are
many end-to-end approaches that translate sensor data (es-
pecially videos) of human activities into language-based de-
scriptions (Donahue et al. 2015; Venugopalan et al. 2015b;
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Figure 2: Overview of framework: 1. making semantic concept from sensor data of ADLs, 2. generating event candidates from
semantic concept stream, and 3. selecting the most likely event sequence from event candidates using real-world properties.

2016). However, even though daily activities change over
time (e.g., people put on slippers after removing shoes,
rather than putting on shoes again), most existing methods
do not consider such temporal variation of ADL events.

To address these problems, we used three real-world prop-
erties for generating an event timeline. First, we used tem-
poral interactions among semantic concepts to remove ob-
jects and places unrelated to each action. Second, we used
commonsense knowledge mined from a language corpus to
find a possible combination of concepts in the real world.
Third, we used temporal variations of ADLs to filter repeti-
tive events. Finally, we integrated these real-world properties
and generated structured events for ADLs. We assumed that
by incorporating such real-world prior knowledge into the
model, it would be possible to find a correct combination of
concepts with a few model parameters so that the proposed
method would be robust to diverse environments, in contrast
to the end-to-end approaches commonly used for video cap-
tioning.

We evaluated our proposed method on a daily-activity
dataset collected in a house, which contains motion and ego-
centric videos and human-annotated language descriptions
of continuous daily activities. The experimental results show
that the proposed method can generate a series of events in
unseen places with high accuracy by using real-world prior
knowledge such as temporal relations among concepts, com-
monsense knowledge from external language resources, and
temporal variation of events when semantic concepts are
given. Furthermore, we found that our method significantly
outperforms the end-to-end deep learning approach used for
video captioning.

The remainder of the paper is organized as follows. First,
we present the details of our framework for generating an
event timeline. Then, we provide some background infor-
mation on activity recognition and video-captioning meth-
ods. Finally, we present an experimental evaluation with the
ADL datasets collected in house-like settings, followed by
our conclusions.

Proposed Approach
Our goal is to produce a temporally ordered event sequence
of ADLs (i.e., an event timeline). To this end, the proposed
method combines multiple semantic concepts made from
sensor data and generates an event timeline as shown in

Figure 1. We describe the proposed event timeline gener-
ation framework, consisting of three main steps, as shown
in Figure 2: generating semantic concepts made from sen-
sor data, generating candidates of events from a semantic
concept stream, and selecting an event sequence based on
the learned Hidden Markov Model (HMM) using three real-
world properties. We introduce these steps after giving defi-
nitions of the semantic concepts and events.

Semantic Concepts and Events
We represent the real-world states as a sequence of events
e = [e1, . . . , e|e|], where each event e is denoted as a tu-
ple of semantic concepts (c1, . . . , cN ). Here, each concept c
is described by timestamps c.t and c.t′, which are start and
end times of the concept, concept name c.w (i.e., label of
the concept), and concept type c.t̂ ∈ {a, o, p}, where a is
the action a subject does, o is the object he/she works on,
and p is the place he/she stands. In this study, we use a tu-
ple (c1, c2, c3), where (c1.t̂ = a, c2.t̂ = o, c3.t̂ = p), as
an event; in other words, c1, c2, and c3 denote action, object,
and place concepts. Note that object concept c2 may be noth-
ing, indicated by the symbol ‘*’ in an event, when a subject
does not work with any object (e.g., walking or standing).
We assumed action and place concepts do not temporally
overlap in the stream while object ones may overlap since
people can use multiple objects at the same time. The con-
cept type c.t̂ specifies the values of concept name c.w sum-
marized in Table 1. Event time is defined as e.t, which equals
the start time of action concept in event e, since each event
represents ADL. For example, the event of “a man drinks
coffee in the living room” at 8:31:55 in a house is denoted
as e = (c1.w = drink, c2.w = coffee, c3.w = living room) and
e.t = 8:31:55. All events e are temporally ordered by e.t to
represent the event timeline.

Generating Semantic Concepts
In this section, we describe generating semantic concepts for
ADLs. We use the sequence-labeling approach for translat-
ing sensor data into semantic concepts of action, object, and
place as shown in Figure 2 (left). First, we use a sliding win-
dow method for feature extraction and predict labels of sen-
sor data in each time-window (window size is N .) Second,
we use a gated recurrent unit (GRU) (Chung et al. 2014;
Cho et al. 2014) for sequence labeling of sensor data. For



the GRU, we assumed that each step t has an input vector
xt, a label of sensor data yt (one-hot vector), and a hidden
state ht. The function of the GRU is defined as:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h′t = tanh(Wxt + rt ◦ Uht−1 + bh)

ht = (1− zt) ◦ ht−1 + zt ◦ h′t
where σ is a sigmoid function, ◦ is a Hadamard product,
Wz,Wr,W ∈ RnH×nI and Uz, Ur, U ∈ RnH×nH . The
dimensions nI are the size of the input vector, and the di-
mensions nH are the size of the hidden vector. bz, br, bh
are bias terms. We refer to the above function as ht =
GRU(xt, ht−1). We predict labels of sensor data xt at
each window t by maximizing the conditional probabil-
ity p(yt|xt) = exp(Woht+bo)∑

i exp (Wohi+bo)
· yt of the GRU, where

Wo ∈ RnL×nH . The dimensions nL are the size of labels.
Then we merge adjacent labels into that of a semantic con-
cept with start and end times. As a result, we can obtain
temporally ordered semantic concepts (i.e., a semantic con-
cept stream) consisting of action, object, and place concepts.
Note that our framework can plug in any methods for mak-
ing semantic concepts with any sensors.

Generating Candidates of an Event
In this section, we explain how to generate candidates of
events by selecting relevant sets of semantic concepts from
the semantic concept stream. Since the semantic concept
stream consists of the unsegmented sequence of semantic
concepts as shown in Figure 1, we segment it using a slid-
ing window method and generate candidates of events from
each window. We assumed each event represents an ADL
(i.e., # of windows equals to # of actions). The method
generates event candidates in the following manner. (i) The
sliding-window method finds action concepts from the se-
mantic concept stream, (ii) it extracts fixed-sized windows
w = [w1, . . . , w|w|] around the start time of an action con-
cept c1.t as denotedw.t, (iii) it finds time-overlapping object
and place concepts within the time-window (window size is
M ), and (iv) it generates candidate events filling out a tu-
ple (c1, c2, c3). Figure 2 (center) shows an example of our
sliding window method. For example, if the method finds an
action concept wear from 8:31:55 to 8:31:58 within a time-
window for three seconds, the method considers wear, slip-
per, and shoe as relevant object concepts, and entrance as a
relevant place concept. As a result, multiple event candidates
e = (c1, c2, c3), where (c1.w, c2.w, c3.w) = (wear, slipper,
entrance), (wear, shoe, entrance), and (wear, *, entrance)
are generated in a window. Then we find the most likely se-
quence of events over windows using real-world properties.

Learning Event Sequence
To efficiently find the most likely event sequence e∗ =
[e1, . . . , e|w|] from many candidates of events over win-
dows, we use the hidden Markov model (HMM). The HMM
is composed of the transition probability between hidden
states and the emission probability between hidden and
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x0 x1 x2

h0 h1 h2 h3

x3

drink coffee living	room<s>
y0 y1 y2 y3

y1 y2 y3

Figure 3: Event language model using GRU, which uses
word embeddings by Glove as input

emission states. We define the hidden states of HMM as
event e and the corresponding emissions as window w in-
dicates event candidates. The system finds the optimal event
sequence e∗ from the event candidate set by maximizing the
following function.

argmax
e∗

|w|∏
i=1

p(ei|wi)

|w|+1∏
i=1

p(ei|ei−1), (1)

where p(ei|wi) is the emission probability and p(ei|ei−1)
is the transition probability. We assumed that the temporal
property of events and the lexical property represented by
a language model of events are independent of each other.
Thus, we decompose p(e|w) = p(et|w)p(el|w), where
p(et|w) represents the temporal relations model and p(el|w)
represents the event language model. When each window
does not have ê, p(e = ê|w) = 0. p(ei|ei−1) can be seen as
the transition between events in windows wi and wi−1. We
show the details of each probability in the following sec-
tions.

Temporal Relations Model In this section, we de-
fine the temporal relations model p(et|w), where et =
(c1.t, c2.t, c3.t). It takes into account the temporal interac-
tions of human activity related to object and place. We as-
sumed that objects and places related to activities are ob-
served close to the time when the action is performed. For
example, when people drink a cup of coffee, they nearly si-
multaneously use the coffee cup. By modeling temporal re-
lations of semantic concepts, we filter irrelevant event can-
didates containing unrelated objects and place concepts at
each activity. We model temporal relations as follows.

p(et|w) ∝
|e|∑
i=1

exp(−α|ci.t− w.t|) (2)

where w.t is time of window w and c.t denotes the start time
of each semantic concept of event e. We use p(et|w) as a part
of the emission probability of the proposed HMM model.

Event Language Model To estimate the likelihood of
concept combinations, we use a language model learned by



a language corpus. We assumed that language texts in the
corpus describe real-world commonsense knowledge, which
represents the likelihood of events that will occur in the real
world. For example, people drink coffee rather than a sand-
wich cookie. Moreover, people drink coffee in the living
room rather than in the toilet room. To represent such com-
monsense knowledge in the real world, we use the language
model of an event p(el|w), where el = (c1.w, c2.w, c3.w).
For this language model, we also use the GRU, that can rep-
resent the word sequence of an arbitrary-length. When us-
ing the GRU as a language model, the k-th word probabil-
ity is defined as p(yk|xk) = exp(Wôhk+bô)∑

i exp (Wôhi+bô)
· yk where

yk is a one-hot vector of k-th word, a hidden state hk =
GRU(xk, hk−1), given a k-th input word vector xk. In ad-
dition, we use the vector space representations of words
learned by GloVe (Pennington, Socher, and Manning 2014)
as input of the GRU language model for addressing the case
when the semantic concept names do not appear in the train-
ing corpus. We define xk as the Glove word vector of word
ci.w in an event. We use the joint probability of

p(el|w) =
|e|∏
k=1

p(yk|xk) (3)

when reading the word embeddings of the last word c3.w
as the likelihood of the GRU language model. Figure 3
shows the GRU language model with the word embeddings
of Glove.

Event Sequence Model In the real world, our ADLs grad-
ually change over time. For example, people put on slippers
after removing shoes, rather than putting on shoes again. We
incorporate this temporal variation of events into the HMM
model. We assumed difference of vector representations of
events describes temporal variation of ADL events. To this
end, we define the transition probability as dissimilarity be-
tween vectors of events ei and ei−1. We have

p(ei|ei−1) ∝ exp(−β|qi − qi−1|), (4)
where qi is the final hidden state of a GRU when reading the
words in the event, which is a vector representation of event
in a window wi. Figure 2 (right) illustrates the event transi-
tion, which shows that the path of (remove, shoe, entrance)
→ (wear, slipper, entrance) → (walk, *, living room), is
more likely to occur than that of (remove, shoe, entrance)→
(wear, shoe, entrance)→ (walk, slipper, entrance), since the
hidden vector of event (wear, slipper, entrance) is seman-
tically dissimilar to that of (remove, shoe, entrance) rather
than that of (wear, shoe, entrance).

Inference of Event Sequence
There are several paths through the hidden states that rep-
resent an event sequence. Figure 2 (right) shows the lattice
of our HMM that represents a sequence of events. Each col-
umn shows a window holding event candidates. Our model
is an instance of an HMM, and therefore the computation
of marginals is tractable. To efficiently find the most likely
sequence for events, we apply a Viterbi algorithm (Rabiner
1989) using the normalized emission p(ei|wi) and transition
probabilities p(ei|ei−1) of events over windows.

Related Work
The purpose of this work is to generate language descrip-
tions about activities of daily living by using sensor data
(e.g., motion and video data). Here, we show related work
on activity recognition and video captioning.

To recognize human activities of daily life, many ap-
proaches used classification or sequence labeling of indoor
activities with pervasive (Buettner et al. 2009; Tapia, In-
tille, and Larson 2004; Van Kasteren et al. 2008) and wear-
able motion sensors (Bao and Intille 2004; Hammerla, Hal-
loran, and Plötz 2016). Recently, many vision-based activ-
ity recognition methods have been proposed using a head-
mounted wearable camera (Ramanan 2012; Ma, Fan, and
Kitani 2016) and a wrist-worn camera (Maekawa et al. 2010;
Ohnishi et al. 2016) for capturing everyday activities and
their related objects in diverse home environments. We also
used wearable sensors for making semantic concepts with
the same motivation. However, these existing methods focus
on predicting activity labels from sensor data. In contrast,
in this paper, we mainly focus on generating a sequence of
ADL events (i.e., an event timeline) that consists of a combi-
nation of multiple semantic concepts in addition to recogniz-
ing activities. Note that our method can plug in any activity
recognition methods for making action concepts.

There has been significant research interest in generat-
ing language description from videos, which is called video
captioning. Many approaches used sequence labeling tech-
niques such as CRF (Regneri et al. 2013), statistical ma-
chine translation technique (Rohrbach et al. 2013), and the
end-to-end deep learning approach, which encodes time-
varying visual input with convolutional neural networks
(CNNs) and decodes a variable-length sentence with long-
term/short-term memory (Donahue et al. 2015) or gener-
ates multiple sentences using hierarchical Recurrent Neural
Networks (RNNs) (Yu et al. 2016). However, they used the
TACoS Multi-Level corpus, which involves human-activity
videos captured only in a kitchen scenario with fixed cam-
era settings. In contrast, our dataset used in this paper has
been collected by wearable sensors to evaluate methods
with sensor data in diverse places. Moreover, our meth-
ods can generate language descriptions of various activi-
ties conducted in diverse places by using real-world prop-
erties. The recent study of video captioning for YouTube
videos and movie clips uses the end-to-end approach based
on deep learning (Venugopalan et al. 2015c; 2015a; 2016;
Krishna et al. 2017). However, the end-to-end approaches do
not work when testing in an environment different from the
training environments, since the end-to-end deep learning
methods directly learn the relationships between video data
and language descriptions. In contrast, our proposed method
can accurately generate an event timeline in unseen places
by using real-world properties when semantic concepts from
sensor data are given.

Experiments
Datasets
We evaluated our proposed method using datasets of ADLs,
which are manually annotated with structured event descrip-



Table 1: List of names of semantic concepts used for actions, objects, and places.
action: a object: o place: p

‘brush’ ‘close’ ‘drink’ ‘eat’ ‘flip’
‘flush’ ‘gargle’ ‘hold’ ‘make’
‘open’ ‘pour’ ‘put’ ‘read’ ‘remove’
‘sit down’ ‘sleep’ ‘stand up’ ‘stir’
‘throw away’ ‘turn off’ ‘unroll’
‘walk’ ‘wash’ ‘wash face’ ‘watch’
‘wear’ ‘wipe’

‘air conditioner’ ‘bed’ ‘book’ ‘bottle’ ‘butter knife’ ‘cof-
fee’ ‘cracker’ ‘cream cheese’ ‘cup’ ‘dishwasher’ ‘duster’
‘faucet’ ‘floor’ ‘food package’ ‘food container’ ‘glass’ ‘hand’
‘hot water’ ‘mop’ ‘plate’ ‘pot’ ‘refrigerator’ ‘remote control’
‘shelf’ ‘shoe’ ‘sink’ ‘slipper’ ‘sofa’ ‘sponge’ ‘spoon’ ‘switch’ ‘ta-
ble’ ‘television’ ‘toilet’ ‘toilet paper’ ‘toothbrush’ ‘towel’ ‘water’
‘wristwatch’

‘bathroom’
‘bedroom’
‘entrance’
‘kitchen’
‘living room’
‘washroom’

entrance
• put	on	/	remove	shoes

kitchen
• make	a	sandwiched	cookie
• make	coffee
• wash	hands	
• wash	the	dishes	

living	room
• drink	coffee
• eat	a	sandwiched	cookie
• mop	the	floor	
• turn	on/off	A/C	
• turn	on/off	TV	

bathroom
• wash	hands
• lift	toilet	seat
• unroll	the	toilet	paper
• flush	the	toilet	

washroom
• brush	teeth	
• gargle
• wash	face	

bedroom
• clean	the	table
• look	at	a	watch	
• read	a	book
• sleep	on	the	bed

entrance

kitchen

living	room

bedroom
washroom

bathroom

3 m entrance
• put	on	/	remove	shoes

kitchen
• make	a	sandwiched	cookie
• make	coffee
• wash	hands	
• wash	the	dishes	

living	room
• drink	coffee
• eat	a	sandwiched	cookie
• mop	the	floor	
• turn	on/off	A/C	
• turn	on/off	TV	

bathroom
• wash	hands
• lift	toilet	seat
• unroll	the	toilet	paper
• flush	the	toilet	

washroom
• brush	teeth	
• gargle
• wash	face	

bedroom
• clean	the	table
• look	at	a	watch	
• read	a	book
• sleep	on	the	bed

entrance

kitchen

living	room

bedroom
washroom

bathroom

3 m

look	at	a	watch make	coffee wash	hands mop	the	floordrink	coffee
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unroll	the	toilet	paper read	a	book

Figure 4: Layout of experiments, list of daily activities in
different places, and experimental places captured by wear-
able camera.

tions of the ADLs that subjects performed in a house. This
dataset has been used in egocentric video retrieval with ges-
ture motions (Miyanishi et al. 2016). The dataset consists of
motion signals (e.g., acceleration and gyro) and first-person
vision videos captured by a head-mounted wearable camera
that enables us to capture various ADLs in diverse places.
To collect real-world data, 8 subjects wearing motion sen-
sors and a wearable camera performed continuous 20 ADLs
in 6 different places 10 times (i.e., in total 10 sessions) ac-
cording to the instructions on a worksheet under the semi-
naturalistic collection protocol (Bao and Intille 2004) to col-
lect more variable behavior data than in a laboratory setting.
For example, the subject sat on the sofa and drank a cup of
coffee while watching TV in the living room, and then he
moved to the kitchen to wash dishes. Total motion signals
and video length are about 17 hours. A single session av-
eraged 10.86 minutes over the subjects. Figure 4 shows the
layout of the house and a list of the 20 activities the subject
performs in the different places.

To evaluate the event sequence generated by our pro-
posed method, we annotated event descriptions to this ADL
dataset. We had two annotators manually label semantic
concepts of the 27 activities, 39 objects, and 6 places shown

in Table 1 by watching 17 hours of videos from wear-
able cameras attached to the heads of subjects. Then, we
instructed the six annotators to manually re-order labeled
concepts for making correct events that describe real-world
events using crowd-sourcing services. For example, annota-
tors first selected an action concept and then object and place
concepts related to the selected action concept. Then they re-
ordered them to make event descriptions such as (drink, cof-
fee, living room) when drink (activity), coffee (object), liv-
ing room (place) concepts were nearly simultaneously ob-
served. In total, we obtained 11,501 action concepts, 13,087
object concepts, 931 place concepts, and 11,280 descriptions
of ADL events with 550 unique events.

Experimental Settings
Generating Semantic Concepts We made semantic con-
cepts from the signals of wearable sensors. For feature ex-
traction from motion signals and videos, we followed the
past work (Miyanishi et al. 2016). For the motion-feature ex-
traction, we used acceleration and gyro signals and applied a
short-time Fourier transform, where the window width was
75 samples (3 sec when using 25-Hz data) by shifting one
sample. We standardized motion features using the mean
and variance after downsampling the transformed signals
from 25 to 10 Hz to align the sampling rate to the video
features. For the video feature extraction, we used a slid-
ing window method to obtain the video features, which con-
sist of image features extracted by CNNs with a pre-trained
model of VGG (Simonyan and Zisserman 2015). We used
the activations in the second-to-last fully connected layer as
image features and then applied PCA to the image features
and reduced the dimensions from 4,096 to 250. Then, we
also down-sampled all image features from 29.97 to 10 Hz
by a rolling mean of the time intervals. We combined im-
age feature vectors within a time-window (window size is 3
sec) for making video features and standardized the video
features with the mean and the variance.

We made all semantic concepts using the combined mo-
tion features and video features. To make concepts, we pre-
dicted the labels of sensor data using the GRU with the
sliding-window method. We set the window size toN=3 sec.
We trained our GRU using the Adam optimizer (Kingma
and Ba 2015), with a learning rate of 0.001 and a batch
size of 32. We set hidden dimensions of GRU 300 initialized
with a Normal distribution N (0, 0.01). Its parameters were
optimized to get the best validation performance in train-



ing runs for up to 30 epochs. We used the cross entropy
loss for a multi-class label of action and place. We used
a multi-label one-versus-all loss based on the max-entropy
for multi-labeling of object labels. Then, we predicted labels
of semantic concepts with leave-one-cross-session training,
which trains a model on the nine sessions, and tested it with
another session’s data. The classification performance (F1-
score) of action, object, place labels were 0.7479, 0.6474,
and 0.9855, respectively. Then, we merged the adjacent la-
bels and made concepts. As a result, we obtained 14,444
action concepts, 34,923 object concepts, and 1,113 place
labels. We refer to these two types of concepts, that is,
manually labeled semantic concepts and predicted ones, as
TrueConcept and PredConcept, respectively. Note that we
used the same TrueConcept and PredConcept for all meth-
ods to generate event timelines. Thus we fairly compare the
event generation performance of methods when the semantic
concepts are given.

Generating Event Timeline We generated a sequence
of events using semantic concepts made from sensor data
by using the proposed method. To learn the event lan-
guage model, we used language descriptions of the Montreal
Video Annotation Dataset (M-VAD)1, that describes real-
world events. We applied the following preprocessing to ob-
tain the combinations of action, object, and place concepts.
For extracting verbs and their dependencies, we used the
Stanford dependency parser using Neural Networks (Chen
and Manning 2014). We extracted verbs with “nsubj” and
“xcomp” (clausal complement of a verb) nodes to find ac-
tions. Then we extracted their verb dependency with “dobj”
nodes to find target objects of actions. Moreover, we used
“nmod” (noun dependency) nodes related to target objects to
find places. The event component vocabulary comprised the
4,000 most common verbs, 6,000 most common nouns of
verb dependencies, and 6,000 most common nouns of prior
noun dependencies. Our training set for the language model
was a total of 51,564 events, and 6,871 events were used for
validation.

Our event language model by GRU used the word em-
beddings by Glove. To learn the word embeddings, we
used the 400,000 most common words in English-language
Wikipedia. All other words were replaced with an unknown
〈UNK〉 token. We set hidden dimensions of Glove 300 fol-
lowing (Pennington, Socher, and Manning 2014). For learn-
ing event language model, we use the same parameter of
GRU of making semantic concepts. Furthermore, we opti-
mized its parameters to get the best validation performance
in training runs for up to 10 epochs.

The event generation method needs to generalize the di-
verse places. We tuned a few hyper-parameters the window-
sizeM for generating candidates of the event, α for the tem-
poral model, and β for the event sequence model among
candidates M = {1, 2, 3, 4, 5}, α = {0, 0.2, 0.4, 0.6, 0.8}
and β = {0, 0.2, 0.4, 0.6, 0.8}. We used leave-one-place-
out cross-validation, optimized for the best performance in
Bleu score (as described later), on the validation data of five

1https://mila.quebec/en/publications/
public-datasets/m-vad/

places (not including a target place). Finally, we tested the
method with the target place dataset for each subject. By us-
ing the cross-place-validation, we can see how the proposed
methods robustly improve performance in diverse places
comparing to baselines.

Methods
Our proposed method first generates event candidates by
selecting concepts from the semantic concept stream ac-
cording to the log scores of Eq. (1), which is the sum of
log probabilities of the temporal relations model in Eq. (2),
the event language model in Eq. (3), and the event se-
quence model in Eq. (4). To compare the effectiveness
of each component in the proposed approach, we pre-
pared three methods: GRU-Lang, GRU-Lang+Time, and
GRU-Lang+Time+Context. GRU-Lang uses the score
of the event language model for event timeline gener-
ation. GRU-Lang+Time uses the score of the tempo-
ral model in addition to the score of GRU-Lang. GRU-
Lang+Time+Context selects event sequences based on
HMM using the event sequence model in addition to the
score of GRU-Lang+Time. Moreover, we prepared several
baselines: Random, Unigram, Bigram, S2VT, and S2VT
Ranking. Random randomly selects events among event
candidates in each window to generate an event sequence.
Unigram and Bigram rank events over windows using the
log-probability of unigram and bigram on the M-VAD cor-
pus. By comparing Unigram and Bigram to GRU-Lang,
we can see the strength of the GRU language model. To
compare standard end-to-end video-captioning methods, we
applied S2VT (Venugopalan et al. 2015a), which encodes
a sensor data using one GRU and decodes events using an-
other GRU over each window holding event candidates. We
set the parameters of S2VT following the past work (Venu-
gopalan et al. 2015a). We also prepared S2VT-Ranking to
rank events among event candidates in each window accord-
ing to the word sequence likelihood of GRU in S2VT. Esti-
mating the likelihood of word sequence by S2VT-Ranking
is almost same to GRU-Lang, but S2VT-Ranking use with-
out use of external language resource. We used the leave-
one-cross-place-validation for test data in an environment
different from ones used for training or tuning their param-
eters. We assumed the S2VT and S2VT-Ranking tend to
overly fit the data in a learned environment in contrast to
our method since the end-to-end approach directly learn the
relationship between sensor data and language descriptions
even if semantic concepts are given.

Event Generation Performance
In this section, we evaluate the performance of our proposed
method and compare our methods to baselines that use word
statistics of external language resources and the end-to-end
caption-generation approach. These baselines do not incor-
porate real-world properties such as temporal relationships
between concepts and temporal variation of events.

To generate events, we used both TrueConcept and Pred-
Concept. By using TrueConcept, we can see the pure per-
formance of event timeline generation. Using PredConcept



Table 2: Performances of event timeline generation by different methods when using TrueConcept and PredConcept.
with TrueConcept with PredConcept

Method Bleu@1 Bleu@2 Bleu@3 CIDEr METEOR Bleu@1 Bleu@2 Bleu@3 CIDEr METEOR

Random 0.8051 0.5648 0.5098 3.2954 0.4107 0.7163 0.4545 0.3627 2.4653 0.3537
Unigram 0.7601 0.4811 0.3865 2.9660 0.3786 0.6790 0.4086 0.2710 2.3818 0.3377
Bigram 0.8111 0.6220 0.5660 3.8151 0.4476 0.6925 0.4701 0.3814 2.6310 0.3603
S2VT 0.0955 0.0232 0.0023 0.2045 0.0505 0.0983 0.0425 0.0048 0.2753 0.0567
S2VT-Ranking 0.7708 0.5843 0.4437 3.3487 0.4005 0.6839 0.4862 0.3120 2.6801 0.3550
GRU-Lang (ours) 0.8392 0.6475 0.5911 3.9751 0.4589 0.7115 0.4739 0.3849 2.6507 0.3587
+ Time 0.8510 0.6769 0.6279 4.1519 0.4680 0.7303 0.5092 0.4276 2.8646 0.3755
+ Time + Context 0.8546 0.7126 0.6768 4.3306 0.4793 0.7450 0.5596 0.4776 3.1421 0.3943

assumed a more practical situation. This condition uses sen-
sor data to automatically predict semantic concepts that rep-
resent real-world states. It tells us whether the proposed
method works even under such a practical situation.

Evaluation Measure To evaluate the performance of gen-
erating a sequence of events, we used common evaluation
metrics: Bleu, METEOR, and CIDEr. These metrics are used
for evaluating image and video captioning (Fang et al. 2015;
Krishna et al. 2017), and we calculated them using the codes
of MS COCO caption evaluation2. We assumed that the real-
world properties improve the performance of describing a
continuous event sequence. We then compared the gener-
ated events to the human-annotated true events made using
Bleu, METEOR, and CIDEr scores. Note that when using
PredConcept, we found nearest predicted events to true ones
based on timestamps of event and calculated evaluation mea-
sures over paired events. Here, a higher metric score is bet-
ter.

Experimental Results We investigated how well our
model performs when generating event timelines. Table 2
shows the overall results of a baseline and our proposed
methods when using both TrueConcept and PredConcept.
The results when using TrueConcept in Table 2 (left) show
that GRU-Lang performs significantly better than the Uni-
gram and Bigram over all evaluation metrics, even though
these methods use the same language corpus to build their
language model. This indicates that the language model
used in GRU-Lang could more accurately represent real-
world knowledge by using an external language source,
since GRU models the word sequence of an arbitrary-length
in comparison to a standard language model. In addition,
GRU-Lang significantly outperformed S2VT and S2VT-
Ranking across all evaluation metrics, since the end-to-end
approaches overfit the sensor data collected in the specific
environment and could not predict events in unseen envi-
ronments even if semantic concepts are given. This indi-
cates that we need to use the external resource for modeling
real-world knowledge to generalize event timeline genera-
tion methods applicable to the diverse environments. The re-
sults when using TrueConcept show that the proposed GRU-
Lang, GRU-Lang+Time, and GRU-Lang+Time+Context
significantly outperformed the baselines. This suggests that

2https://github.com/tylin/coco-caption

the modeling of real-world properties is highly effective
for generating an event sequence of ADLs. In particular,
GRU-Lang+Time performs better than GRU-Lang, indi-
cating that considering temporal relations of semantic con-
cepts is essential to generating correct events in the real
world. The finding that GRU-Lang+Time+Context outper-
forms GRU-Lang+Time shows that modeling an event se-
quence improves the performance of event timeline genera-
tion. Moreover, GRU-Lang+Time+Context outperforming
GRU-Lang and GRU-Lang+Time suggests that the inte-
gration of various real-world properties such as temporal re-
lations, real-world commonsense knowledge, and the varia-
tion of events is more effective than using only one or two
properties.

The performance when using PredConcept decreases
compared to that when using TrueConcept, since the pre-
diction of semantic concepts is not perfect. Table 2 (right)
shows that the proposed GRU-Lang outperformed Uni-
gram; however, the performance of GRU-Lang and Bigram
is almost the same. This indicates GRU-Lang is slightly
weak when using event candidates made with PredCon-
cept because predicted concepts are sometimes incorrect.
However, GRU-Lang+Time improved the performance of
event generation and outperformed Unigram, Bigram, and
GRU-Lang, suggesting that incorporating temporal proper-
ties is effective for building an event timeline in practical
situations. GRU-Lang+Time+Context also outperformed
GRU-Lang and GRU-Lang+Time, similar to when using
TrueConcept. It appears that incorporating a variation of
events is also effective for selecting an accurate sequence
of events based on semantic concepts predicted by sensor
data. The result suggests that we can generate a more cor-
rect event timeline in practical situations by incorporating
all real-world properties.

Parameter Sensitivity In this section, we report the sen-
sitivity of the proposed methods’ hyper parameters, which
we tuned with the leave-one-cross-place validation. We
demonstrate in Figure 5 how the values of Bleu for GRU-
Lang+Time change with different α parameters. We as-
sumed that the penalty of the distance among timestamps
of semantic concepts filters incorrect events because peo-
ple do various activities under time constraints. As the pa-
rameter α increases, the Bleu scores of GRU-Lang+Time
also increase when using both TrueConcept and PredCon-



Table 3: Sequence of events obtained by proposed method with TrueConcept.
Timestamp True Event GRU-Lang GRU-Lang+Time GRU-Lang+Time+Context

2015-02-20 11:59:30 walk, *, kitchen walk, faucet, kitchen walk, *, kitchen walk, *, kitchen
2015-02-20 11:59:33 flip, faucet, kitchen flip, faucet, kitchen flip, faucet, kitchen flip, faucet, kitchen
2015-02-20 11:59:36 wash, hand, kitchen wash, hand, kitchen wash, water, kitchen wash, hand, kitchen
2015-02-20 11:59:40 turn off, faucet, kitchen turn off, faucet, kitchen turn off, faucet, kitchen turn off, faucet, kitchen
2015-02-20 11:59:42 wipe, hand, kitchen wipe, hand, kitchen wipe, hand, kitchen wipe, hand, kitchen
2015-02-20 11:59:51 walk, *, kitchen walk, bottle, kitchen walk, bottle, kitchen walk, *, kitchen
2015-02-20 11:59:53 hold, bottle, kitchen hold, bottle, kitchen hold, bottle, kitchen hold, bottle, kitchen
2015-02-20 11:59:55 walk, *, kitchen walk, bottle, kitchen walk, bottle, kitchen walk, *, kitchen
2015-02-20 12:00:00 put, bottle, kitchen put, bottle, kitchen put, bottle, kitchen put, bottle, kitchen
2015-02-20 12:00:03 close, shelf, kitchen close, *, kitchen close, *, kitchen close, *, kitchen

Figure 5: Sensitivity to GRU-Lang+Time hyper parameter.
The x-axis shows the α value of the time-aware model; the
y-axis shows Bleu score.

cept. As the parameter α takes a negative value or zero, the
Bleu scores do not outperform when α takes positive. This
indicates that the event including temporally close semantic
concepts is correct supporting our assumption that temporal
relations among concepts provide an important factor in fil-
tering incorrect events, helping to improve the performance
of event generation.

Figure 6 shows the sensitivity of parameter β in GRU-
Lang+Time+Context, which controls the variations of
events. If β is small, the method tends to generate seman-
tically similar events. In contrast, if β is large, the method
outputs different events before and after this parameter is ap-
plied. We assumed the optimal value of β is positive, since
ADL events in the real world slightly change. According to
the curves corresponding to Bleu scores, the performance of
GRU-Lang+Time +Context increased until β=0.4 and then
decreased over all Bleu scores when using both TrueConcept
and PredConcept. Moreover, as the parameter β takes a neg-
ative value, the Bleu scores decrease. These results support
our assumption and suggest that incorporating a variation of
events into the model plays an important role in generating
an accurate event timeline.

Qualitative Analysis To understand what is predicted by
the proposed event timeline generation methods, we re-
port the sequence of events using TrueConcept to see the
pure performance of event timeline generations. Table 3
shows the sequence of events for the preparation of mak-
ing coffee performed in the kitchen. According to this ta-

Figure 6: Sensitivity to the GRU-Lang+Time+Context hy-
per parameter. The x-axis shows the context-aware model’s
value of β; the y-axis shows the value of Bleu.

ble, GRU-Lang+Time using temporal properties can pre-
dict more accurate events than can GRU-Lang. For ex-
ample, GRU-Lang+Time predicts a true event “(walk, *,
kitchen)” at 11:59:30, while GRU-Lang incorrectly outputs
a wrong event “(walk, faucet, kitchen).” However, GRU-
Lang+Time could not capture the event transitions, and
thus it produced a wrong event sequence such as “(hold,
bottle, kitchen)”→“(walk, bottle, kitchen)”→“(put, bottle,
kitchen)” from 11:59:53 to 12:00:00. In contrast, by in-
corporating a temporal variation of events into the model,
GRU-Lang+Time+Context can generate a more accurate
sequence of events than can GRU-Lang+Time. The method
outputs an accurate event sequence for carrying the object to
another place, such as “(hold, bottle, kitchen)”→“(walk, *,
kitchen)”→“(put, bottle, kitchen).”

Conclusion
This paper showed a novel framework for generating an
event timeline of ADLs using sensor data. The model uses
real-world properties such as the temporal relationship of
concepts, commonsense knowledge, and the temporal vari-
ation of events. The experiment using ADL dataset show
that modeling real-world properties significantly improves
the performance of generating an event timeline.
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