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Abstract

This study tackles video-question answering (VideoQA), which requires spatiotem-
poral video reasoning. VideoQA aims to return an appropriate answer about textual
questions by referring to image frames in video. Based on the observation that multi-
ple entities and their movements in a video can be important clues for deriving correct
answers, we propose a two-stream spatiotemporal compositional attention network that
achieves sophisticated multi-step spatiotemporal reasoning using both motion and de-
tailed appearance features. In contrast to the existing video reasoning approach that uses
frame-level or clip-level appearance and motion features, our method simultaneously at-
tends the region-level appearance features of multiple entities as well as the motion fea-
tures guided by the attending words in the textual question. Furthermore, it progressively
refines internal representation and infers answers by multiple reasoning steps. We evalu-
ate our method on short- and long-form VideoQA benchmarks, MSVD-QA, MSRVTT-
QA, and ActivityNet-QA, and achieve state-of-the-art accuracy on these datasets.

1 Introduction

The goal of video-question answering (VideoQA) is to produce an appropriate answer based
on textual questions that inquire about the visual content in a video. Using this technology,
we can quickly understand real-world events and situations in videos through natural lan-
guage. VideoQA technology will play an important role in a wide range of practical ap-
plications, such as information access to personal visual histories [9], question answering
(QA) for tutorial videos [6], video dialogue systems [4], and embodied agents with visual
perception [7].

In contrast to traditional visual question answering for static images [2, 14, 34], VideoQA
is more challenging because its system has to find relevant frames to a question and provide
answers from possibly unnecessary image frames in the video. To address this problem,
existing VideoQA approaches use the appearance and motion features extracted from a se-
ries of frames and clips in a video with a pre-trained convolutional network (ConvNets)
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A2:	wash	basinQ2:	What	is	in	front	of	the	person	in	white	clothes?

Q1-1: What is the person in white doing?

A1:	wipe	handsQ1:	What	happened	to	the	person	in	white	after	he	washed	his	hands?

A1-1: wipe hands

A1-1: wash hands

Figure 1: VideoQA example: Q1 can be correctly answered by finding a frame (or clip) from video
containing the entity in question and the motions associated with the answer. Q2 can be correctly
answered by finding entities in the image frames related to the question and its answer.

model [16, 39] and a 3D ConvNets [15, 41] scheme and apply learnable soft weights (i.e.,
an attention mechanism [3]) to them to capture frame- and clip-level details relevant to a
given question [44, 52, 55]. The limitation of current VideoQA approaches is their use
of a single encoded vector for representing the semantics of questions. To capture the
more complex semantic relationships between question words and frames (and clips), sev-
eral works simultaneously attend visual contents and their related part of words in a ques-
tion [13, 25, 31, 32, 33]. Some notable works use multi-step reasoning that gradually refines
the motion-appearance representations of video and question representations [10, 12, 46, 48].
These multi-step video reasoning approaches achieved competitive performances on short-
and long-form VideoQA datasets. Previous results of these existing works suggest the ef-
fectiveness of motion-appearance features, simultaneous attention over words and visual
contents, and progressive refinement through multi-step video reasoning. However, even
though the events that occurred in the video involve multiple entities (e.g., humans and ob-
jects) [23, 42], these methods fail to capture the associations between the region-level details
of the entities in the frame and their corresponding question words. As described in the ex-
amples in Fig. 1, to get correct answers for VideoQA, the detailed appearance information
of the entities in the frame is an important clue as well as the motion information over the
frames.

Motivated by this observation, we developed a two-stream spatiotemporal MAC network
(TS-STMAC), which performs sequential spatiotemporal reasoning on video frames based
on the question content. We used a SlowFast model that shows high performance in video-
understanding tasks [11] and a bottom-up attention model useful for image VQA tasks [1]
for extracting robust motion and detailed appearance features. Our TS-STMAC network is
a natural extension of the Memory, Attention, and Composition (MAC) network [20], which
yields promising results in spatial-reasoning tasks [21, 29] based on compositional attention.
More concretely, we devised a two-stream spatiotemporal MAC cell, which is a new neural
module containing a spatiotemporal attention mechanism that simultaneously finds motion
features and detailed appearance features of the entity’s regions relevant to the attending
words in a question. We use it as a building block for our VideoQA framework, recur-
rently apply it for multi-step reasoning, and progressively infer the correct answer. Through
such question-aware multi-step spatiotemporal reasoning, the model can focus on the critical
frames and regions and ignore useless information.

The main contributions of this work are threefold. First, we devise a TS-STMAC cell
that simultaneously captures the relationship between entity regions and motion over frames
based on the attended question words. Second, we incorporate this TS-STMAC cell into a
recurrent network that performs iterative spatiotemporal reasoning for VideoQA. This multi-
step reasoning progressively refines the internal network representation for answering ques-
tions. Third, we conduct experiments on short- and long-form VideoQA datasets to validate
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our method’s effectiveness and show that it outperforms the state-of-the-art approaches by a
large margin on three public benchmarks.

2 Related Work

VideoQA resembles an extension of image-based visual question answering (VQA) into the
video domain. This task requires both language and video understanding to infer correct
answers from complex semantics. Most current approaches use temporal reasoning methods
with attention mechanisms over the temporal dimension for extracting the important frame
information from a video [35, 44, 45, 47, 50, 56]. Although these works use frame-level
attention for videos, some VideoQA models use segment-level attention [52, 53, 55] to ad-
dress the long-range dependency of the video context. Instead of explicitly using segments
in the video, we use motion features extracted from short clips to represent segment informa-
tion. Due to the video’s nature, some complex questions in VideoQA tasks cannot be solved
without viewing multiple frames in the video. To capture temporal relationships over the
frames, some methods use self-attention mechanisms or temporal relational modeling and
graph ConvNets [25, 31, 33]. Our method can also consider the temporal relationship over
frames using representations of the internal state obtained from past inference steps and the
input frames in the current step. In contrast to the static images used for the standard VQA,
video contains dynamic information that captures real-world events. Methods have been pro-
posed that take into account motion and appearance information that represents dynamics in
the video guided by questions [10, 12, 46, 48]. These methods show high performance in
multiple VideoQA benchmarks. In contrast, our method models the fine-grained appearance
information from object-detection networks as well as the motion information from video
recognition networks.

In contrast with modeling the frame-level temporal dynamics of video, spatiotemporal
reasoning approaches, which focus on the frame- and region-level visual content relevant to
a question, remain relatively unexplored. Traditional approaches use a combination of re-
current neural networks (RNN) and ConvNets, which encode spatiotemporal video features
and a textual question, and jointly learn their multi-modal representations [22, 54]. However,
these works dont model the interaction between question words and visual contents. Some
words in the question often indicate entities in the video, which can be important clues for
video reasoning. To further improve the VideoQA performance, the QA model has to indi-
cate words in the question that correspond to the image regions and video frames [24, 51].
In addition to attending both textual and visual content, recent works use the fine-grained
appearance of video frames with external knowledge [27] or spatial relationships among en-
tities in the video frames [19, 26]. However, only using appearance information is inadequate
to capture movement in videos, which is essential for questions about the motions of humans
and objects. To overcome this limitation, we use motion features over frames as well as de-
tailed appearance features. Several works use motion-appearance features for spatiotemporal
video reasoning [26, 40]. However, these works lack an attention mechanism for question
words, even though word-level attention plays an important role in finding frames that rep-
resent motion information and image regions that represent detailed appearance information
relevant to a question. Our work differs because our proposed neural module can simulta-
neously attend to question words, frames, and image regions to represent their associations.
Moreover, our question-aware spatiotemporal network uses this neural module as a building
block and can progressively infer relevant answers by multi-step video reasoning to focus
on important video information. Our sophisticated method outperforms existing temporal or
spatiotemporal reasoning methods on both short- and long-form VideoQA datasets.
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Figure 2: Illustration of our two-stream spatiotemporal MAC (TS-STMAC) network. First, video
encoder extracts motion and detailed appearance features from short clips and frames using SlowFast
networks and Faster-RCNN (top left). Question encoder extracts text features from question words
using BERT and LSTM (bottom left). Then a neural module TS-STMAC cell takes these features
as inputs and computes the interaction between question and video features by focusing on frames
(or clips) and regions relevant to the question. The network repeats this process multiple times to
progressively refine the internal representation. Finally, the classifier predicts the final answer using
question embedding and the final memory state of the TS-STMAC cell. The regions in the selected
frames with higher attention values at each step are shown more brightly.

3 Approach

3.1 Problem Definition

In this work, we consider the following VideoQA task. Given video v 2 V and question
q 2 Q about this video, the VideoQA method outputs an answer: â 2 A. Our goal is to
predict answer â that matches true answer a

⇤.
Video Embeddings: Video consists of the sequence of frames that have multiple regions
representing entities. For motion representation, we use a Kinetics-600 classification model
of SlowFast networks that achieved high performance for action detection tasks [11]. We
extract the motion feature ( f

a

t
2 R2304) from the t-th clip and use a series of motion features

f
a = { f

a

t
}T

t=1 for representing the video, where T is the number of clips. For detailed appear-
ance information, we extract the region features ( f

b

t
= { f

b

i,t}N

i=1) from the t-th frame using
Faster R-CNN [38], trained with the Visual Genome dataset [30], where each f

b

i
2 R2048

corresponds to a region feature of an entity, and N is the number of detected entities with
the highest confidence scores. Following past VQA work [1], we set N = 36 and use the
image feature in the region multiplied by its confidence scores as the region feature. For the
appearance features of the video, we use a series of sets of region features f

b = { f
b

t
}T

t=1.
The VideoQA models input is a tuple of these motion-appearance features and the following
question features.
Question Embeddings: For question representation, we use a BERT model [8]. To deal
with unknown words that appear in the training data but not in the test data, we first split
a question into words of length M by the WordPiece tokenizer [43] and extracted a feature
vector from the last layer of a pre-trained 12-layer BERT model for each word. Note that
we fine-tuned this layer during the VideoQA training. Then we encoded the question us-
ing a one-layer bi-directional LSTM (biLSTM) [18], which is used for guiding the models
multi-step reasoning. We used a series of output states from LSTM {cwi}M

i=1 as contextual
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question word embeddings. We also used q 2R2d as a question-sentence embedding, which
is represented by the concatenation of the final hidden states from the backward and forward
LSTMs. We also applied a linear transformation to q for representing step-aware question
embedding qi 2 Rd at the i

th reasoning step.

3.2 Two-Stream Spatiotemporal MAC Network

For VideoQA, we developed a two-stream spatiotemporal MAC (TS-STMAC) network that
consists of an input unit, a core recurrent network, and an output unit. Fig. 2 shows an
overview of our proposed model. The input unit transforms the raw video and a question
into distributed vector representations. The core recurrent network sequentially addresses
the question by decomposing it into a series of operations (control) that retrieve information
from the video (clip- and frame region-level features) and aggregates the results into internal
memory. As the core recurrent network, we repeatedly used the following TS-STMAC cells
at each step.

We introduced a two-stream spatiotemporal MAC cell, which is the building block for
our VideoQA model. Our proposed cell mainly consists of two neural components: temporal
and spatial MAC cells. Because both cells are based on MAC cells [20], we start with a brief
explanation of this neural module, which has been used for spatial-reasoning tasks [28].
MAC Cells: A MAC cell is a neural module designed to apply attention-based operations to
perform reasoning. It holds two hidden states at the i-th step: control ci 2 Rd and memory
mi 2 Rd . Control state ci stores the information on the reasoning operation that should be
performed. Memory state mi has an intermediate result that was computed in the recurrent
reasoning process. The MAC cell updates the control and memory states for each reasoning
step i = 1, . . . ,S using three internal units: control, read, and write. It iteratively aggregates
information from a knowledge source according to the control state in the following steps:
(i) The control unit focuses on some words of the question using an attention mechanism [3]
and updates control state ci. (ii) The read unit attends to some parts of knowledge base {k}K

i=1
(e.g., image features for VQA) and retrieves information ri from them based on the current
control and previous memory states ci and mi�1, where K denotes the size of the knowledge
base. (iii) The write unit updates the memory based on retrieved information ri and previous
memories {m0, . . .mi�1}. The following are the equations of the reasoning step in the MAC
cell:

ci = ControlUnit(ci�1,{cw j}M

j=1,qi) (1)

ri = ReadUnit(mi�1,{k j}K

j=1,ci) (2)

mi = WriteUnit({m j�1}i

j=1,ri,ci). (3)

Due to space limitations, see [20] for more details about these neural units. As mentioned in
Section 1, using motion and detailed appearance information is important to solve VideoQA.
However, normal MAC cells can only handle one of them. Therefore, we extended this MAC
cell and created a TS-STMAC cell that can handle both motion and detailed appearance
features for spatiotemporal reasoning.
Two-Stream Spatiotemporal MAC Cell: Figure 3 shows the proposed two-stream spa-
tiotemporal MAC (TS-STMAC) cell architecture, which consists of two cells: a spatial cell
and a temporal MAC cell. The latter is used for representing the temporal structure of the
video. We used the motion features of the clips in video { f

a

j
}T

j=1 as this cells input. The tem-
poral MAC cell updates the controller and the memory states based on the motion features.
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Figure 3: Overview of our two-stream spatiotemporal MAC (TS-STMAC) cell, which consists of a
temporal and a spatial MAC cell. Temporal MAC cell (top) takes motion features as input and updates
internal representation m

a that holds temporal information over clips based on control state c. Spatial
MAC cell (bottom) takes detailed appearance features as input and updates internal representation m

b

that holds spatial information over regions in frames based on c.

As with a standard MAC cell, a temporal MAC cell is given by

ci = ControlUnit(ci�1,{cw j}M

j=1,qi) (4)

r
a

i
= ReadUnittemporal(m

a

i�1,{ f
a

t
}T

t=1,ci) (5)

m
a

i
= WriteUnittemporal({m

a

j�1}i

j=1,r
a

i
,ci), (6)

where m
a 2 Rd and r

a 2 Rd denote the memory state and the retrieved information of the
temporal MAC cell, which holds the temporal information of the video content based on
controller state ci. ControlUnit, ReadUnittemporal, and WriteUnittemporal are the same units of
Eqs. 1, 2, and 3.

The spatial MAC cell, which represents the spatial structure of the video frames, takes as
input a series of visual feature sets f

b = { f
b

t
}T

t=1 (i.e., detailed appearance features), which
are extracted from T video frames. The spatial MAC cell uses the read unit multiple times
to handle a series of feature sets with arbitrary length. First, the spatial MAC cell retrieves
spatial information r

b

i,t from region features { f
b

j,t}N

j=1 of t
th frame by selectively focusing on

specific regions based on control state ci:

r
b

i,t = ReadUnitspatial(m
b

i�1,{ f
b

j,t}N

j=1,ci), (7)

where m
b 2 Rd and r

b 2 Rd denote the memory state and the retrieved information of the
spatial MAC cell that holds the spatial information of the video frames. ReadUnitspatial is
the same unit of Eq. 2. The spatial MAC cell repeats this process for all frames and obtains
T retrieved spatial information {r

b

i,t}T

t=1. After that, average pooling is applied to them for
aggregating the common spatial information related to a question over the video frames as
follows:

r
b

i
= pool({r

b

i,1,r
b

i,2, · · · ,rb

i,T}), (8)

where pool denotes the average pooling layer. Then the spatial MAC cell updates the mem-
ory state on the spatial information:

m
b

i
= WriteUnitspatial(m

b

i�1,r
b

i
,ci), (9)
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where WriteUnitspatial is the same unit of Eq. 3.
Due to both the spatial and temporal MAC cells, the TS-STMAC cell can jointly model

the video’s spatial and temporal structures based on a textual question by attending motion-
appearance features guided by question word features.
Output Unit: We compute the final answer with a simple classifier using the question and
final memory states of the spatial and temporal MAC cells after applying S cell computations
as input:

o
0 =W1[q;m

a

S
;m

b

S
]+b1, o = softmax(ELU(W2o

0+b2)), (10)

where W1, W2, b1, and b2 are learnable parameters, and ELU is an exponential linear unit [5].
The classifiers final output is given by

a = argmax
a2Ao. (11)

4 Evaluation

4.1 Experimental Setup

Datasets: On three VideoQA datasets, we compared our method with its different com-
ponents and several state-of-the-art approaches. We evaluated with the MSVD-QA [44],
MSRVTT-QA [44], and ActivityNet-QA [49] datasets. MSVD-QA and MSRVTT-QA are
short-form VideoQA datasets. The average lengths of the videos in these datasets are 10
and 15 sec., respectively. Both MSVD-QA and MSRVTT-QA include five different question
types: what, who, how, when, and where. In contrast, ActivityNet-QA is a more challenging
VideoQA dataset that uses longer videos about human activities. The average length of its
videos is 116 sec. The videos were sampled from the ActivityNet dataset [17]. ActivityNet-
QA includes four main question types: (motion, spatial relationship, temporal relationship,
and other). Furthermore, according to their answer types, the Free questions are divided into
six sub-question types: (yes/no, number, color, object, location, and other. We sampled 20
frames at equal intervals for appearance feature extraction and 20 clips for motion feature
extraction. For the answer candidates, we selected the top 1,000 most frequent answers in a
training split.
Implementation Details: We trained our method with up to 100 epochs using AMSGrad [37]
(a variant of Adam [49]) for optimization with a learning rate of a = 10�4 and a batch size
of 32. We employed early stopping if the validation accuracy did not increase for ten epochs.
We converted the words in the questions and answers to lower cases and set dimension d of
the TS-STMAC cell to 256. For the multi-step reasoning of the TS-STMAC network, we
used two reasoning steps (S = 2) following the average performance on the validation data
across three VideoQA datasets. We also used self-attention connections between the cells.
Evaluation Metric: Following past works [10, 49], we measured the performance using
accuracy. The evaluation metric is given by Accuracy = 1

|Q| Â|Q|
i=1 1[a⇤

i
= ai], where indicator

function 1[·] equals 1 only if a
⇤
i

and ai are the same and 0 otherwise.
4.2 Ablation Experiments

To verify the contribution of the proposed modules in the TS-STMAC network, we first
compared four architectures with different neural modules on three VideoQA datasets. In
addition to the proposed TS-STMAC, we prepared the following variants: temporal MAC
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Method Feature Dataset
Text Motion Appearance MSVD-QA MSRVTT-QA ActivityNet-QA

TMAC Glove ResNet 0.371 0.368 0.365
TMAC Glove SlowFast 0.393 0.377 0.385
SMAC Glove RCNN 0.375 0.369 0.366
TS-TMAC Glove SlowFast ResNet 0.400 0.378 0.381
TS-STMAC Glove SlowFast RCNN 0.401 0.378 0.385
TMAC BERT ResNet 0.397 0.382 0.365
TMAC BERT SlowFast 0.413 0.388 0.381
SMAC BERT RCNN 0.401 0.385 0.370
TS-TMAC BERT SlowFast ResNet 0.415 0.391 0.390
TS-STMAC BERT SlowFast RCNN 0.432 0.394 0.402

Table 1: Comparison with different VideoQA architectures with different features. Best result for
each dataset is denoted by boldface.

(TMAC), spatial MAC (SMAC), and two-stream temporal MAC (TS-TMAC) networks.
TMAC used a single temporal MAC cell as a core recurrent network that can use either mo-
tion or appearance features as inputs. It resembles a simple baseline that applied the MAC
network [20] with temporal attention over frames to the VideoQA task. SMAC used a single
spatial MAC cell that can use detailed appearance features for video reasoning. TS-TMAC
used two temporal MAC cells to consider both clip-level motion and frame-level appearance
features. As described in Section 3.2, TS-STMAC used spatial and temporal MAC cells to
address both motion and detailed appearance features. We also compared the performance
with different textual, motion, and appearance features to evaluate their complementary ef-
fects. For comparison to BERT word embeddings, we prepared Glove examples (2 R300)
that were initialized with Glove [36]. To validate the effectiveness of the region-level appear-
ance feature RCNN extracted from Faster-RCNN (i.e., detailed appearance features), we pre-
pared a frame-level appearance feature ResNet (2 R2048) extracted from ResNet101 [16].
SlowFast denotes the clip-level motion features extracted from SlowFast networks.

Table 1 shows the accuracy using different architectures with different features. Note
that TS-STMAC (BERT + SlowFast + RCNN) is our proposed method. The methods using
BERT for encoding a question outperformed those with Glove in many cases when using
identical models and features. This result indicates that the difference from BERT provides
better embeddings than Glove and can address the unknown words in a question. More-
over, TMAC (BERT + ResNet) outperformed SMAC (BERT + RCNN), and TS-STMAC
(BERT + SlowFast+ RCNN) outperformed TS-TMAC (BERT + SlowFast+ ResNet)
across all the datasets, indicating the superiority of the RCNN features in the VideoQA task
that can represent detailed appearance information in video frames. Compared with TMAC
(BERT + SlowFast), which used only motion features and SMAC (BERT + RCNN), which
used detailed appearance features, TS-STMAC (BERT + SlowFast + RCNN) improved
the performance in all cases. These results suggest that modeling both motion and detailed
appearance features provides complementary effects.

4.3 Comparison with the State-of-the-Art

In this section, we compare our proposed method, TS-STMAC, to the existing state-of-the-
art methods on short- and long-form VideoQA datasets. Because the number of instances
in some question types is relatively small in some datasets [10], we report the number of
instances of each question type in the overall VideoQA datasets. To compare our method to
the existing ones, we used the reported accuracies of their original papers unless otherwise
stated.
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Method
MSVD-QA MSRVTT-QA

What Who How When Where All What Who How When Where All
8,149 4,552 370 58 28 13,157 49,869 20,385 1,640 677 250 72,821

HME [10] 0.224 0.501 0.730 0.707 0.429 0.337 0.265 0.436 0.824 0.760 0.286 0.330
CAN [48] 0.211 0.479 0.841 0.741 0.571 0.324 0.267 0.434 0.837 0.753 0.352 0.332
MIN [26] 0.242 0.495 0.838 0.741 0.536 0.350 0.295 0.450 0.832 0.747 0.424 0.354
HCRN [31] 0.255 0.518 0.773 0.741 0.500 0.363 0.295 0.451 0.821 0.783 0.344 0.355
Ours: TS-STMAC 0.337 0.569 0.786 0.724 0.464 0.432 0.336 0.488 0.831 0.786 0.336 0.394

Table 2: Experimental results on MSVD-QA and MSRVTT-QA datasets: Number below each ques-
tion type denotes number of QA pairs on the test split. Best result for each question type is marked in
boldface.

Method
ActivityNet-QA

Motion Spatial Temporal Yes/No Color Object Location Number Other All
800 800 800 2,094 697 318 386 606 1,499 8,000

ESA [49] 0.125 0.144 0.025 0.594 0.298 0.142 0.259 0.446 0.284 0.318
HME [10] 0.174 0.159 0.023 0.607 0.304 0.132 0.277 0.475 0.297 0.331
CAN [48] 0.211 0.173 0.036 0.626 0.311 0.201 0.306 0.480 0.333 0.354
HCRN [31] 0.215 0.171 0.031 0.657 0.316 0.220 0.298 0.454 0.336 0.362
Ours: TS-STMAC 0.355 0.183 0.039 0.683 0.364 0.258 0.316 0.500 0.376 0.402

Table 3: Experimental results on ActivityNet-QA dataset. Best result for each question type is marked
in boldface.

MSVD-QA Dataset: We show the VideoQA performance on MSVD-QA in Table 2 (left).
We compared our TS-STMAC with the temporal reasoning models (HME [10], CAN [48],
and HCRN [31]) and the spatiotemporal reasoning model (MIN [26]). HME, CAN, and
HCRN mainly use the temporal information of video frames. MIN uses both the spatial
and temporal information of the video. Our method significantly outperformed the existing
ones and achieved an overall accuracy 0.432, which is 28.2% better than the prior best of
HME, the temporal reasoning method (0.337). TS-STMACs performance is 19.0% better
than HCRN, the latest temporal reasoning model (0.363). Our TS-STMAC is weaker than
the existing methods on how, when, and where questions. This problem is caused by a class
imbalance, where the number of instances of these questions is relatively small.
MSRVTT-QA Dataset: In Table 2 (right), we compared our method with HME, CAN,
MIN, and HCRN on the MSRVTT-QA dataset. As in the MSVD-QA dataset, our method
significantly outperformed the others on two major question types: what and who. Our
method achieved the best overall accuracy of 0.394, which is 11.3% better than the spa-
tiotemporal reasoning model, MIN (0.354), and 11.0% better than the temporal reasoning
model, HCRN (0.355). From both the MSVD-QA and MSRVTT-QA results, our proposed
method showed a high performance in the short-form QA dataset.
ActivityNet-QA Dataset: Next we report the performance on ActivityNet-QA, which is a
long-form VideoQA dataset, unlike the MSVD-QA and MSRVTT-QA datasets. We com-
pared our method with the original baseline model of this dataset, ESA, and the three lat-
est temporal reasoning models: HME, CAN, and HCRN. Because the HME and HCRN
results have not been published yet, we applied both to ActivityNet-QA with default pa-
rameters based on their public code. Table 3 summarizes the experimental results of nine
question types on ActivityNet-QA. Our proposed method outperformed the other methods
and achieved the best accuracy of 0.402, which is 11.0% better than the best of the tempo-
ral reasoning model, HCRN (0.362). Our method also outperformed the others on all the
question types. In particular, it improved its performance by 65.1% compared to HCRN on
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Q:	What	happens	after	playing	table	tennis?

two

✓

Step	#1
Q:	How	many	ladies	are	watching	different	types	of	bags?

rest

✓

Step	#2

What	happens	after	playing	table	tennis?

two

✓

Step	1
How	many	ladies	are	watching	different	types	of	bags?

rest

✓

Step	2

Figure 4: Visualization of typical examples by TS-STMAC network: We visualize the spatial atten-
tions of objects with colored regions and attending words in a question at each reasoning step. Regions
with higher spatial attention values are shown brighter. The more attending words are shown with
darker color.

motion questions on the human activities in the video. Also, our method improved its perfor-
mance by 17.2% compared to HCRN on object questions in the video. These results indicate
the effectiveness of using a powerful spatiotemporal reasoning model that combines detailed
appearance and motion features.

4.4 Qualitative Results

Finally, we demonstrate how multi-step spatiotemporal reasoning works by visualizing ex-
amples. Fig. 4 shows some typical examples from the reasoning process of the TS-STMAC
network. We selected the frames based on a score, which is the product of the temporal at-
tention to a frame and the top five spatial attentions on the regions at each reasoning step. We
also show words that receive more attention from the controller unit. The results show the
cell tends to identify relevant frames and regions through multi-step reasoning, suggesting
that our method effectively incorporated the spatial and temporal features as well as textual
information into VideoQA.

5 Conclusion

We proposed a new spatiotemporal video reasoning method for VideoQA. We devised a
two-stream spatiotemporal MAC (TS-STMAC) cell to model the relationships between the
spatial and temporal structures of a video as well as the textual information of questions.
Then we proposed a TS-STMAC network that sequentially applies the TS-STMAC cell for
multi-step reasoning. We evaluated our approach on three VideoQA datasets: MSVD-QA,
MSRVTT-QA, and ActivityNet-QA. Our qualitative and quantitative results showed the use-
fulness of both the spatial and temporal reasoning modules and the multi-step iterations in
the reasoning.
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